Стекловолокно

Материал из свободной русской энциклопедии «Традиция»
Перейти к навигации Перейти к поиску
Пучок стеклянных волокон (стекловолокно)
Сткловолокно для замеса бетона

Стекловолокно́ (стеклонить) — волокно или комплексная нить, формеруемая из стекла. В такой форме стекло демонстрирует необычные для себя свойства: не бьётся и не ломается, но вместо этого легко гнётся без разрушения. Это позволяет ткать из него — стеклоткань и прменять в разных областях производсва, например, бетона и т.д.

Стекловолокна естественного происхождения встречаются в местах, где в прошлом происходили извержения вулканов, название данного вида волокон — волосы Пеле[1]. Волосы Пеле имеют химический состав базальтовых пород, имеют включения кристаллов и по физико-механическим свойствам не являются аналогами стекловолокна[2].

Виды стекловолокна (стеклонити)[править | править код]

Стекловолокно экструдируют из расплава стекла специального химического состава. Экструзия, как и в других случаях, производится путем продавливания расплава через прядильные фильеры. Исходный продукт, как и в других областях производства химических волокон получается в виде бесконечных элементарных волокон (филаментов), из которых далее в процессе переработки формируются или комплексные нити (диаметр филаментов 3—100 мкм (линейная плотность до 0,1 Текс)) и длиной в паковке 20 км и более (непрерывное стекловолокно), линейная плотность до 100 Текс, или в стеклянные ровинги (продукты линейной плотностью более 100 Текс). В этом случае, как правило, продукт перерабатывается в крученые нити (ровинги) на крутильно-размоточных машинах. Данные полуфабрикаты далее могут быть подвергнуты любым формам текстильной переработки в крученые изделия (нити сложного кручения, шнуры, шпагаты, канаты), текстильные полотна (ткани, нетканые материалы), сетки (тканые, специальной структуры).

Стекловолокно

Стекловолокна также могут выпускаться в дискретном (штапельном) виде. Также исходный стеклянный ровинг может быть переработан путем резки, рубки или разрывного штапелирования в дискретные (штапельные) волокна со штапельной длиной 0,1 (микроволокно) — 50 см, титр волокна в данном случае как правило ниже, чем филаментных нитей и соответствует диаметру 0,1—20 мкм. Основная масса штапельных стекловолокон перерабатывается в нетканые материалы (кардные, иглопробивные, нитепрошивные, стеклохолст) по различным технологиям (кардочесание, преобразование прочеса, иглопробивание, нитепрошивание, «вэт-лэйд»), стекловату, штапельную пряжу. По внешнему виду непрерывное стекловолокно напоминает нити натурального или искусственного шёлка, а штапельное — короткие волокна хлопка или шерсти.

Основная область применения стекловолокна и стеклотекстильных материалов, — использование в качестве армирующих элементов стеклопластиков и композитов (т. н. «препреги»). Также стеклоткани могут самостоятельно использоваться в качестве конструкционных и отделочных материалов. В этом случае они зачастую подвергаются той или иной форме отделки, главным образом — пропитке связующим (латекс, полиуретан, крахмалы, смолы. прочие полимеры).

Производство[править | править код]

Непрерывное стекловолокно формуют вытягиванием из расплавленной стекломассы через фильеры (число отверстий 200—4000) при помощи механических устройств, наматывая волокно на бобину. Диаметр волокна зависит от скорости вытягивания и диаметра фильеры. Технологический процесс может быть осуществлен в одну или в две стадии. В первом случае стекловолокно вытягивают из расплавленной стекломассы (непосредственно из стекловарочных печей), во втором используют предварительно полученные стеклянные шарики, штабики или эрклез (кусочки оплавленного стекла), которые плавят в стеклоплавильных печах или в стеклоплавильных аппаратах (сосудах).

Производство штапельного стекловолокна.[3]
Сткловолокно для тканей

Штапельное стекловолокно формуют путём раздува струи расплавленного стекла паром, воздухом или горячими газами и др. методами.

Физико-механические свойства[править | править код]

Механические свойства волокон:[4]

Волокно Плотность, 103·кг/м3 Модуль растяжения, ГПа Предел прочности при растяжении, ГПа
E-стекло 2,5 73 2,5
S-стекло 2,5 86 4,6
Кремнезём 2,5 74 5,9

Свойства высокомодульных волокон и однонаправленных эпоксидных композиционных материалов:[5]

Тип волокон Марка волокна Свойства волокон длиной 10 мм Свойства композиционных материалов
σв E σв E σв / (pg), км
ГПа ГПа ГПа ГПа
Стеклянные ВМ-1 3,82 102,9 2,01 69,1 98
>> ВМП 4,61 93,3 2,35 64,7 114
>> М-11 4,61 107,9 2,15 72,6 98
Борные БН (сорт 2) 2,75 392,2 1,37 225,5 75
>> БН (сорт 1) 3,14 382,4 1,72 274,6 87
>> Борофил (США) 2,75 382,4 1,57 225,5 80
Органические СВМ 2,75 117,7 1,47 58,5 111
>> Кевлар-49 (США) 2,75 130,4 1,37 80,4 100

Объёмная доля наполнителя 60 %.

Механические свойства волокон:[6]

Марка стекла Плотность
ρ, 10−3 кг/м3
Модуль
упругости
Е, ГПа
Средняя
прочность на базе
10 мм, ГПа
Предельная
деформация
ε, %
Высокомодульное 2,58 95 4,20 4,8
ВМ-1 2,58 93 4,20 4,8
ВМП 2,46 85 4,20 4,8
УП-68 2,40 83 4,20 4,8
УП-73 2,56 74 2,00 3.6
Кислотостойкое 7-А

К сведению[править | править код]

Физико-механические свойства стекла

На предел прочности на растяжение стекол влияют микроскопические дефекты и царапины на поверхности, для конструктивных целей в основном применяют стекло с прочностью на растяжение 50 МПа. Стекла имеют Модуль Юнга около 70 ГПа.[4]

Применение стекловолкна[править | править код]

Новый вид кровли[править | править код]

По виду материал как металлочерепица, но качество в десятки раз лучше. Главными компонентами стеклопластиков являются стекловолокнистые армирующие материалы и синтетические связующие. Тонкие высокопрочные стеклянные волокна обеспечивают прочность и жесткость стеклопластика. Связующее придает материалу монолитность, способствует эффективному использованию механических свойств стеклянного волокна и равномерному распределению усилий между волокнами, защищает волокно от химических, атмосферных и других внешних воздействий, а также само воспринимает часть усилий, развивающихся в материале при работе под нагрузкой. Связующее придает материалу способность формоваться в изделия самых различных форм и размеров, что обеспечивает широкое применение материалов из стекловолокна — стеклопластиков во многих отраслях промышленности. Стеклопластик является материалом, куда входят стеклянный наполнитель и синтетическое связующее вещество (полимер).

Палочки из стекловолкна[править | править код]

Палочки из стекловолокна

Палочка из стекловолокна хорошо справляется с застарелыми загрязнениями на посуде, плите, и даже литых дисков автомобилей. Борется с известковым налетом.

Материалы для строительства и отделки[править | править код]

Это:
  • Стеклопластиковая арматура
  • Теплоизоляция базальтовая
  • Фибра базальтовая
  • Блоки стеновые
  • Штукатурные фасады.
Фибра базальтовая

Удивительно, но хрупкое стекло, расплавленное и вытянутое в виде тончайших нитей, полностью изменяет свои свойства, становится эластичным и гибким, мрожет применяться как ткань.

Стеклоткань – и ГОСТ устанавливает ее технические параметры, обладает целым рядом удивительных свойств, которые не имеют другие ткани:

  • эта ткань не горит и представляет собой великолепный теплоизолятор. Отсюда – ее применение для изготовления одежды рабочих, связанных с открытым огнем – металлургов, сварщиков, пожарных;
  • стеклоткань – экологически чистый продукт, никаких вредных воздействий на человека не оказывающий. Она пришла на смену ранее применявшемуся асбесту, тоже надежному против огня, но при этом вредному для здоровья;
  • материал этот отлично выдерживает воздействие агрессивных сред – кислот и щелочей, к тому же может работать при высоких температурах. Поэтому одно из применений стеклоткани – это изготовление фильтров для газов и жидкостей в различных химических производствах;
  • диэлектрические свойства позволили использовать стеклоткань для обматывания кабелей и обмоток трансформаторови т.д.

См. также[править | править код]

Примечания[править | править код]

  1. Волосы Пеле — статья из Большой советской энциклопедии
  2. Аблесимов Н. Е., Земцов А. Н. Релаксационные эффекты в неравновесных конденсированных системах. Базальты: от извержения до волокна. — Раздел 6.1.1. Терминология. — М.: ИТиГ ДВО РАН, 2010.
  3. http://www.findpatent.ru/patent/231/2314370.html
  4. а б Болтон У. Конструкционные материалы, металлы, сплавы, полимеры, керамика, композиты. Карманный справочник /Пер с анг. — М.: Додека-XXI, 2004. — 320 с. — Карманный справочник. — ISBN 5-94120-046-3о книге
  5. Б. Н. Арзомасов. Конструкционные материалы. — Машиностроение, 1990. — 688 с. — ISBN 5-217-01112-2о книге
  6. Медведев В. В., Червяков А. Н. «Обоснование выбора композиционного материала для корабельных виброизоляторов».